Powers of the Vandermonde determinant, Schur functions, and the dimension game
نویسنده
چکیده
Since every even power of the Vandermonde determinant is a symmetric polynomial, we want to understand its decomposition in terms of the basis of Schur functions. We investigate several combinatorial properties of the coefficients in the decomposition. In particular, I will give a recursive approach for computing the coefficient of the Schur function sμ in the decomposition of an even power of the Vandermonde determinant in n + 1 variables in terms of the coefficient of the Schur function sλ in the decomposition of the same even power of the Vandermonde determinant in n variables if the Young diagram of μ is obtained from the Young diagram of λ by adding a tetris type shape to the top or to the left. Résumé. Comme toute puissance paire du déterminant de Vandermonde est un polynôme symétrique, nous voulons comprendre sa décomposition dans la base des fonctions de Schur. Nous allons étudier plusieurs propriétés combinatoires des coefficients de la décomposition. En particulier, nous allons donner une approche récursive pour le calcul du coefficient de la fonction de Schur sμ dans la décomposition d’une puissance paire du déterminant de Vandermonde en n + 1 variables, en fonction du coefficient de la fonction de Schur sλ dans la décomposition de la même puissance paire du déterminant de Vandermonde en n variables, lorsque le diagramme de Young de μ est obtenu à partir du diagramme de Young de λ par l’addition d’une forme de type tetris vers le haut ou vers la gauche.
منابع مشابه
Polynomials arising in factoring generalized Vandermonde determinants II: A condition for monicity
h our previous paper [l], we observed that generalized Vandermonde determinants of the form vn;~(ll,. , G) = \q” / I 1 5 i, k 5 n, where the 2, are distinct points belonging to an interval [a, b] of the real line, the index n stands for the order, the sequence p consists of ordered integers 0 5 pi < ~2 < ... < pLn, can be factored as a product of the classical Vandermonde determinant and a Schu...
متن کاملPower of a Determinant with Two Physical Applications
An expression for the kth power of an n×n determinant in n2 indeterminates (zij) is given as a sum of monomials. Two applications of this expression are given: the first is the Regge generating function for the Clebsch-Gordan coefficients of the unitary group SU (2), noting also the relation to the 3F2 hypergeometric series; the second is to the even powers of the Vandermonde determinant, or, e...
متن کاملELLIPTIC INTEGRABLE SYSTEMS Generalizations of Cauchy’s Determinant Identity and Schur’s Pfaffian Identity
Abstract We review several determinant and Pfaffian identities, which generalize the evaluation formulae of Cauchy’s determinant det (1/(xi + yj)) and Schur’s Pfaffian Pf ((xj − xi)/(xj + xi)). As a multi-variable generalization, we consider Cauchytype determinants and Schur-type Pfaffians of matrices with entries involving some generalized Vandermonde determinants. Also we give an elliptic gen...
متن کاملInvariant theory for singular α-determinants
From the irreducible decompositions’ point of view, the structure of the cyclic GLn(C)-module generated by the α-determinant degenerates when α = ± 1 k (1 ≤ k ≤ n − 1) (see [6]). In this paper, we show that − 1 k -determinant shares similar properties which the ordinary determinant possesses. From this fact, one can define a new (relative) invariant called a wreath determinant. Using (GLm, GLn)...
متن کاملVandermonde Varieties and Relations among Schur Polynomials
Motivated by the famous Skolem-Mahler-Lech theorem we initiate in this paper the study of a natural class of determinantal varieties which we call Vandermonde varieties. They are closely related to the varieties consisting of all linear recurrence relations of a given order possessing a non-trivial solution vanishing at a given set of integers. In the regular case, i.e., when the dimension of a...
متن کامل